Ultimate L (第2/2页)
fact,aredherring. Thekeynotionwewillbestudyingisthefollowing: Definition.N\subseteqVisaweakextendermodelfor`δissupercompact’iffforallλ>δthereisanormalfineUonP_δ(λ)suchthat: P_δ(λ)\capN\inU,and U\capN\inN. ThisdefinitioncouplesthesupercompactnessofδinNdirectlywithitssupercompactnessinV.Inthemanuscript,thatNisaweakextendermodelfor`δissupercompact’isdenotedbyo^N_{mlong}(δ)=\infty.Notethatthisisaweaknotionindeed,inthatwearenotrequiringthatN=L[\vecE]forsome(long)sequence\vecEofextenders.TheideaistostudybasicpropertiesofNthatfollowfromthisnotion,inthehopesofbetterunderstandinghowsuchanL[\vecE]modelcanactuallybeconstructed. Forexample,finenessofUalreadyimpliesthatNsatisfiesaversionofcovering:IfA\subseteqλand|A|<δ,thenthereisaB\inP_{δ}(λ)\capNwithA\subseteqB.Butinfactasignificantlystrongerversionofcoveringholds.Toproveit,wefirstneedtorecallaniceresultduetoSolovay,whousedittoshowthat{\sfSCH}holdsaboveasupercompact. Solovay’sLemma.Letλ>δberegular.ThenthereisasetXwiththepropertythatthefunctionf:a\mapsto\sup(a)isinjectiveonXand,foranynormalfinemeasureUonP_δ(λ),X\inU. ItfollowsfromSolovay’slemmathatanysuchUisequivalenttoameasureonordinals.
Proof.Let\vecS=\leftbeapartitionofS^λ_\omegaintostationarysets. (WecouldjustaswelluseS^λ_{\le\gamma}foranyfixed\gamma<δ.Recallthat S^λ_{\le\gamma}=\{\alpha<λ\mid{mcf}(\alpha)\le\gamma\} andsimilarlyforS^λ_\gamma=S^λ_{=\gamma}andS^λ_{<\gamma}.) Itisawell-knownresultofSolovaythatsuchpartitionsexist. Hughactuallygaveaquicksketchofacrazyproofofthisfact:Otherwise,attemptingtoproducesuchapartitionoughttofail,andwecanthereforeobtainaneasilydefinableλ-completeultrafilter{\mathcalV}onλ.Thedefinabilityinfactensuresthat{\mathcalV}\inV^λ/{\mathcalV},contradiction.Wewillencounterasimilardefinablesplittingargumentinthethirdlecture. LetXconsistofthosea\inP_δ(λ)suchthat,letting\beta=\sup(a),wehave{mcf}(\beta)>\omega,and a=\{\alpha<\beta\midS_\alpha\cap\betaisstationaryin\beta\}. Thenfis1-1onXsince,bydefinition,anya\inXcanbereconstructedfrom\vecSand\sup(a).AllthatneedsarguingisthatX\inUforanynormalfinemeasureUonP_δ(λ).(ThisshowsthattodefineU-measure1sets,weonlyneedapartition\vecSofS^λ_\omegaintostationarysets.) Letj:VoMbetheultrapowerembeddinggeneratedbyU,so U=\{A\inP_δ(λ)\midj‘λ\inj(A)\}. Weneedtoverifythatj‘λ\inj(X).First,notethatj‘λ\inM.Lettingau=\sup(j‘λ),wethenhavethatM\models{mcf}(au)=λ.Since M\modelsj(λ)\geauisregular, itfollowsthatau=j(\left).InM,theT_\betapartitionS^{j(λ)}_\omegaintostationarysets.Let A=\{\beta
上一页
目录
下一章