从大学讲师到首席院士_第四百四十一章 核聚变的不完善磁约束,能者多劳?能者担责! 首页

字体:      护眼 关灯

上一页 目录 下一页

   第四百四十一章 核聚变的不完善磁约束,能者多劳?能者担责! (第2/3页)

料支持下,超导材料技术有了很大提升,能够制造更高强度的磁场。

    另外,磁场发生的制造技术也有了提升。

    在有关升阶超导材料的研发上,汤建军只是进行了简单介绍,毕竟他不是材料领域的专家。

    等汤建军说完了自己的部分,他就把时间留给了赵甲荣。

    赵甲荣是超导材料研究中心的副主任,他介绍起了超导材料的研究中心最新的成果。

    “我们研究发现了一种新型超导材料,命名为CWF-021,这种材料所能承载的电流电流非常高,大概是铌钛合金的三倍以上。”

    “另外,通过一系列的实验,我们认为把其中的碳元素换成一阶碳,会让CWF-021具有更强的熔点和韧性。”

    “这方面还在进行研究……”

    “……”

    赵甲荣所做的报告也非常震撼。

    很多强磁场发生装置使用的超导材料都是铌钛合金,铌钛合金承载的电流强度上限非常高,也就代表激发的磁场强度高。

    现在研究出了一种新材料,承载的电流强度上限比铌钛合金高出三倍以上,也就代表能够制造的磁场强度会高很多。

    这种材料技术突破,能给核聚变研究打下坚实的基础。

    在赵甲荣做完报告以后,会场给了学者们讨论休息时间,然后王浩就在所有人的关注下走上了台。

    会场顿时安静下来。

    很多人都期待王浩的发言,王浩肯定是项目主导人之一,也是世界最有影响力的科学家。

    他们都想知道王浩会说些什么。

    王浩也对发言有准备,大屏幕上出现了PPT,但标题就只有四个字--《反应容器》。

    “我所要讲的就是反应容器。”

    “大家应该都知道,我们论证的核聚变研究会使用湮灭力场技术,湮灭力场技术结合托卡马克装置,就是核聚变反应最适合的容器。”

    “但是,好多人对此的理解很浅显,我在这里就认真的讲一下。”

    王浩快速进入主题,“我们所制造强湮灭力场,外层使用了磁干涉手段,和托卡马克的磁约束方式是类似的……”

    “这种磁干涉手段也可以和托卡马克的磁发生装置叠加使用。”

    “也就是一套磁场设备,可以用来干涉强湮灭力场,同时也可以用来约束内部的核聚变反应。”

    “这是其中一点。”

    “另外,我们并不需要托卡马克的完全磁约束……”

    他讲到了重点。

    这一句话说出来,就让很多学者瞪大了眼睛,国际上有关核聚变的研究都围绕托卡马克装置,而托卡马克装置是进行完全的磁约束,也就是螺旋磁场形成一个闭合循环。

    现在王浩说不需要‘完全磁约束’,等于说是不需要‘闭环磁场’。

    这是全新的技术理论。

    王浩认真道,“我的想法是以磁约束的空当,作为装置的主要输出端。如果磁约束有空当,肯定会承受非常大的压力。”

    “但是,装置内部是反重力场。”

    “大家知道,强反重力场最高能把粒子活跃度降低一倍,反应速度则能降低三倍,甚至四倍以上。”

    “这样,我们就能通过调整内部反重力场强度,来对内部聚变反应的速率进行控制。”

    “外层,则有吸收能量的强湮灭力场。”

    “输出端要承受很大的压力,中子撞击,α粒子的影响都是问题,所以还需要结合高端材料……”

    “丁宗权教授的团队,研究出一种升阶高熔点、韧性的铁钨材料,熔点达到了4380摄氏度……”

    后续都是有关材料以及其他技术的介绍。

    王浩对于反应容器的介绍,主要就是说明磁场、反重力场以及强湮灭力场对于核聚变反应的协调控制。

    他还提出了‘不完善磁约束’的想法。

    托卡马克装置是利用磁场对于反应进行完全控制,同时,也带来了一系列问题。

    比如,温度控制。

    比如,原料问题。

    托卡马克的完全磁约束限制了反应速率,使得氘氘反应变得‘几乎不可能’,只是点火都是个大难题。

    现在已经解决了点火问题,剩下的就是反应效率问题了。

    氘氘反应,是核聚变的最佳选择。

    原因很简单,
加入书签 我的书架

上一页 目录 下一页