求道九州_Divinity Box I 首页

字体:      护眼 关灯

上一章 目录 下一页

   Divinity Box I (第1/4页)

    从构成物质的基本粒子,再到星球、星系、星系团、宇宙网、可观测宇宙……它们全都被束缚在名为“有限”的界域里。只要存在任何一个用来衡量尺度的单位,以上这些事物的规模就能够被有限大的自然数所描述。对于任何一个自然数,它之上都总会存在永无止境的更大概念。人类可以发明出各式各样的运算符号来让它们进行自我叠加与扩张,最后得出远超原有大小的自然数,可是这样始终都不会得到一个本就不存在的最大值。自然数不会止步于某一个特殊的位置,它们只会永恒地延伸于“无穷大”的下方。我们姑且将最小的无限命名为“N”,它对自然数而言是第一个不可抵达的天花板。对于任何自然数x(此处的x与后文相异),只要满足x<N,则x 1<N恒成立。倘若存在一个在各个方位上都具备无限尺度的空间,它自身的规模就可以用N↑x表示(N的x次方)。后者是维度的数量,前者是该空间在各维度方向上的规模。N↑1中的每一个点都可以代表一个实数,而它本身则可以充当全体实数的集合(虽然点的数目与实数的数量一致,可N↑1这一整体的规模依旧只等同于自然数总数的单位长度之和)。从N↑2开始,便可以引入虚数轴、建立坐标系,并构造无穷无尽的几何图形。每一个维度都是更高一维上的截面。像N↑N这样的无限维度(N↑N也可以单纯地表示无限的无穷次方),从它内部截取的任意一个有限区域都可以容纳无限多更小的物体,而无数个这样的区域也可以被更大的有限空间容纳在内。这就是理想状态的大宇宙,在无数的方向上皆是没有尽头的广阔疆域。那些拥有无限尺度却只具备有限维度的宇宙,在它们更高一维的方向上都可以存在无数个与之一样的个体,共同构成名为“多元宇宙”的集合。而这个集合所处的维度之上,依旧还有更高维上的无限排列……那么,N↑N↑2又能表示怎样的空间呢?高德纳箭头(↑)的运算模式遵循从右往左的规律。因此N↑N↑2=N↑(N↑2)=N↑(N×N)=(N↑N)↑N=(N↑N)×(N↑N)×(N↑N)……重复N次=(无穷大无限维度)的无穷次方。如果符合N↑N这一表示法的无穷维度宇宙里分布着N↑N(无限的无穷次方)个基本单位(基本粒子、量子泡沫、空间褶皱、超弦……都有可能是其中的单位),而每一个基本单位里都存在着一个一模一样的宇宙(基本单位对外界来说有限大,而进入内部之后却无限宽广。那么这些单位既可以被看作通往其它宇宙的入口,也可以被当成无限容量的空间容器)。然后这些宇宙内部的每一个基本单位里又有N↑N尺寸的宇宙,其中的基本单位中依然存在……倘若这套娃般的过程没有尽头,则无限循环构成的最终整体就是N↑N↑2。

    上述的N↑N↑2所描述的循环是向自身内部更小层面的无限延伸。反之,向外的延伸也可以用N↑N↑2来表示。让最初的那个无限维度宇宙被另一个同类的基本单位包含,而那个同类也是其它无限维度宇宙里的基本单位……重复N次,正是向外延伸的无限循环系统。无论是向内、向外还是双向延伸,都是能够用来表达N↑N↑2的具体模型。若是使满足N↑N↑2的向外延伸结构容纳在另一个宇宙的基本单位里,将这个宇宙作为另一个向外循环系统(N↑N↑2)的底层,然后再让该循环系统无限延伸于更大循环的基本单位之中……重复N次,则N↑N↑3就会形成。N↑N↑3=N↑(N↑3)=N↑(N×N×N)=((N↑N)↑N)↑N=((N↑N)↑N)×((N↑N)↑N)×((N↑N)↑N)……重复N次=((N↑N↑2)×((N↑N↑2)×((N↑N↑2)……重复N次。如果把N↑N↑3作为循环的底层,那么无限重复之后就会得到N↑N↑4……那么无限进行这一过程必然会得到N↑N↑N(N的N↑N次方),也就是N↑(N↑N)=N↑(N×N×N……)=((N↑N)↑N)↑N……重复N次后的结果。既然存在N↑N↑N,就必然存在N↑N↑N↑2、N↑N↑N↑3……N↑N↑N↑N(N的N↑N↑N次方)、N↑N↑N↑N↑N(N的N↑N↑N↑N次方)……N↑N↑N↑N↑N↑N……重复N次,便得到了N↑↑N,因为a↑↑b=a↑a↑a↑……a(总共出现b次a)。在此之后还有N↑↑N↑↑N=N↑↑(N↑↑N)=N↑N↑N↑N……重复N↑↑N次、N↑↑N↑↑N↑↑N=N↑↑(N↑↑N↑↑N)=N↑N↑N↑N……重复N↑↑N↑↑N次……最终来到N↑↑↑N的领地之中。因为a↑↑↑b=a↑↑a↑↑a↑↑……a(总共出现b次a),所以N↑↑↑N=N↑↑N↑↑N↑↑……N(共出现N次N)。同理可得,N↑↑↑↑N=N↑↑↑N↑↑↑N↑↑↑……N(共出现N次N),N↑↑↑↑↑N=N↑↑↑↑N↑↑↑↑N↑↑↑↑……N(共出现N次N)……以此类推,存在于这无限过程之后的便是N↑↑↑↑↑……N(重复N次↑),而它可以用N→N→N表示,因为a→b→c=a↑↑↑……b(重复c次↑)。当然,后面依旧有更大的N→N→N→N、N→N→N→N→N……然后最终无限重复后得到的N→N→N→N→……N(重复N次→)又可以被设为另一种运算的起点。

    在这些运算方式之上,还存在着诸多类型的运算方式。其中一种极度低级的运算方式就能够构造出一个比前面的过程高出无限个级别的结构(“ ”为一级,“×”为二级,“↑”为三级,“→”为四级……),我们可以把这个结构重新定义为底层,然后再用更高级的运算无限堆砌下去……可是无论怎样堆叠“N”,得到的结构所对应的基数都与最开始的N一样等同于阿列夫零,始终无法到达阿列夫一的高度。而在那之上的阿列夫二,对于阿列夫一的领域而言又具备同样概念跨度的“不可达性”。接下来还有阿列夫三、阿列夫四……阿列夫N、阿列夫.阿列夫一、阿列夫.阿列夫.阿列夫……(重复N次)阿列夫N(第一个阿列夫不动点)、阿列夫.阿列夫.阿列夫……(重复2N次)阿列夫N(第二个阿列夫不动点)……以此类推,还会得到更多的不动点以及超越了这些常规不动点的概念,而不断出现更高级的数学概念的过程会无限延伸下去,永远位于最低等的大基数(强不可达基数)之下。尽管人类定义出了如此多的数学概念,但是他们发明出的符号数量始终是有限的,而其中一个符号就是“φ”。这个“φ”具备不止一种意义,代表了不止一种运算方式。这里的“φ”与普通的“φ”完全不同,只需要给予它最基本的“原料”,它就能构造一切数学公理以及许多在公理之外的数
加入书签 我的书架

上一章 目录 下一页